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identically, and relation (4.2) takes the form 

J, (r2 - 5) + 1, (TJ - 

me above relation certainly holds in the 

71) + I, (h - r*) = 0 (4.5) 

first, as well as in the second case of in- 
tegrability, though the conditions for a complementary integral to exist in these Cases @I= 
rl= rl or I, = I,,Q= T,) arenotnecessaqforthe relationtohold. We alsonote thatrelation (4.5) 

does not hold for a homogeneous ellipsoidal body. 

5. In the case of an arbitrarily small perturbation in the integrable problem of the 
motion of a sphere whose centre of mass coincides with its geometrical centre, the necessary 
conditions for a complementary first integral to exist, analytic in the phase variables, in 

the class of bodies with ellipsoidal surfaces (ar and rk in (2.1) are such, that a,*-!-q*t 

a3* + 0, II* + rzg - r,' # O), are combinations of the corresponding conditions of Sect.3 and 4. This 
proves the following 

Theorem. The following three conditions are simultaneously necessary for a complementary 
first integral to exist, analytic in the phase variables, in the problem of the motion of a 
heavy rigid ellipsoidal, nearly spherical body, whose centre of mass coincides with its geo- 
metrical centre and the moments of inertia are all different: 1) the centre of mass of the 
ellipsoid coincides with its geometrical centre; 2) the principal axes of the inertia ellipsoid 
and surface ellipsoid coincide; 3) the moments of inertia of the ellipsoid and the semi-axes 
of its surface are connected by the relation 

1, (P? - Ps) + 1, (Ps - PI) $ 1, (P1 - Pr) = 0 

The problem of the existence of a complementary analytic integral in the problem of the 
motion of a body of arbitrary, nearly spherical shape, whose centre of mass coincides with 
its geometrical centre, is more interesting and more complex. In this case, the first approxi- 
mation in terms of a small parameter already yields a potential which may represent, generally 
speaking, an arbitrary function of the direction cosines TV, y2,y8, unlike the function H, (2.2) 
representing the s'um of the linear and quadratic forms of the variables ~~,y~,?~, 

1. 
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PERTURBED MOTION OF A KOVALEVSKAYA TOP* 

N.N. MOTORINA 

Perturbation theory based on the appiication of Lie series, is used to 
study a special case of the motion of a rigid body about a fixed point. 
The equations written in action-angle variables are used in Hamiltonian 
form. Thesolutions are obtained in the form of trigonometric series with 
constant coefficients. 

It is assumed that the distribution of mass in the body is clsoe to the distribution in 
the Kovalevskaya case and the centre of gravity of the body is situated fairly near to the 
fixed point. The canonical Deprit variables /l/ are used. The motion of the body can be 
described in these variables by the following set of equations: 

d(L.C,H) dF d (1. I, h) aF 
df 

=- 
dU.c".h) ’ dr=-a(L.b,H) 

Using the condition that the centre of gravity of the body is situated fairly close to 
the fixed point and the principal moments of inertia A and B differ from each other, we can 

l Prikl.Matem.Mekhan.,49,3,504-506,1965 



write the Hamiltonian of these equations, in accordance with the order of magnitudies, in the 
form /2/ 

(1) 
F = F, + F, 

G=--Le L’ 
Fa----- 2c 

F,=&C(GP--L’) cc&++ (LY’G’sinsincocosg+ 

cv’cz- Hz cos 1 sin 4 + H v-sin 1) 

Here A, 3, C are the principal moments of inertia fox the fixed point, P is the weight of 
the body and t is the coordinate of the centre of mass in the principal axes of inertia. 

We take e= mar (A - B,r,) as the small parameter. To solve the equationswith theHamiltonian 
(1) it is convenient to apply the method of the theory of canonical transformations using Lie 
series, developed by Hori /3/. 

We eliminate the variable i from the Hamiltonian by carrying out the canonical variable 
transformation 

L, G, Ii. 8, 8, h - L’, G’, H’, I’, g’, h’ 

with help of the generating function S'(L', G', H', i', g', h') = S,'-+ S,'+... . We assume that the 
Hamiltonian of the new equations can also be written according to the order of magnitudes in 
the form F’ = f,’ -+ F,’ + . . . . 

According to the Hori method the components of the generating function and the Hamiltonian 
are obtained from the formulas 

F,' = F,, F,’ = F,,, S,’ = l F,,df’, Fz’ = Fzs + ‘IS (F, + FI’, S,‘), (21 

S,’ = J IF,,, - l,‘* if.1 + F,‘, S,‘)pldS’ 

etc. The curly brackets arethepoisson brackets and the indices p and s denote the periodic 
and secular part in t' respectively. 

the parameter t' is introduced by means of the equations 

d (L’. G’. H i aFo’ d (I’. g’, h’) aFo’ 
di = d(I,P’,h) ’ dt’ = - a (L’, c’. H’) 

The fo;iowinp Poisson bracket holds by virtue of these equatrons: 
(Fo, Sk) = -&Jdf’ 

and this gives the relation connectingt'and I' 

dt’ = -(aF,:iiL~-‘dl’ (3: 

Applying algorithro (2) to the initial Hamiltonian P, taking 13) into account, we obtain (the 
prime accompanying the variables are omitted for convenience) 

Fz’ = 
C (~1- ff)1(G1- tq (G2 j 3L.21 kH1 CT--H2 kH’ 

GbIB’L* (A - (‘) T4G1 =6-2(;(+ 

k k (G: - Hz) (0 - Lz) 
4L2- 1 bL%’ coi?i-_~J(il--a)(C’--L’)eoEg- 

kH ((2 - H*) P2AC.X <: 
4LL' cosg. k=.J_c. 

The resi;lting Iiaxilzonlar. F’ does not ccntain the variable I'. To eliminate the remaining 

angle variable g' we carry out another canonical transformation 

L', G', fi'. t', g', h’ - L”, G”, ff”, I”, g’. h” 

with help of the generating function S"tL",G", H", I", g", h"i = S,"+ &"-I-.... As before, we assume 
that the Hamiltonian of the new equations of motion has the form F" = FO" "F," f .,.. 

TO find the components of this Hamiltonian and the generating function, we use the 
formulas 

FO' = F,‘, F,” = F,‘, F; = F*,‘. S,” = l F,,‘dt’ (5) 

etc. We introduce the parameter t" by means of the equations 

d (L”. G”, H”) aF,” d (I”, B”+ k”) aF1’ 

dt” = d(i",p".h"t ' dl” = - a (L”, C”, H”) 
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Then the relation connecting t" withg" will be 
if:' = -(dF,"l.W)-'dg" 

Changing in expressions (5) from integration with respect to t" to integration with 
respect to g", we obtain (omitting the double primes accompanting the variables) 

F,’ = [. . .] - 
k (G* - HI) (0 - L’) 

0L’G’ 

SI’ = 
k, (C’ - H’) (0 - ts) k,H (Gs - H*) 

8LW ml 2g + 2L0 sing- 

3W 
~LG' v/CC:- H')(G*- L*); k, = fi 

The expressions for F,“,F,’ are identical with those given in (4), and 
denotes the expression within the square brackets for F,’ in (4). 

The Hamiltonian F” obtained contains no angle variables. The equations 

directly L'= const, G'- eonst, x'= const, while the angle variables will be linear 
I . I' = I'"t + I,, g = g' t + go, h” = h’“t + h, 

the symbol I...1 

of motion yield 
functions of 

where lo, go, ho are the initial values of the corresponding varaibles. From the equations 
motion we obtain (double primes accompanying the variables are omitted) 

,.._ _ L(A- C) L (A - B) c (A - B)* (G’ + 3L') 
AC + 2AB + 32ABL*(A-C) - 

time 

of 

k (C, + Hz) kLHz Cr_HP‘ 

4C1L3 - 4@((;'-LL1) G'+ 0 (ES) 

c (-4 i m CC (A - By (0 + L’) k (0 - iOff*) kH2 
g ‘” = - -- 

2.4B 16.411212(‘4-CC) - 465 --+ 

kH2 [C’ (4Cz - 3L’) - If* (50 - 4L*)] 

cs (CI - LI) J(GZ - HI) (G* - L2) 
$ 0 (9) 

5kH kH kH (2G* - 3H’) 
h’” = 4c’ - GL?G? - 4Q 1/&Z _ HZ) ((;? _ L1) i 0 ($3) 

The last expression contains only the terms of the second order of smallness in the small 
parameter. 

The initial variables and any function of the initial variables can be found using the 
formula 

f (L, G, H, 1, g. h) = f (L”, G”, H”, l”, g”, h”) + (1, S’ + S”) + 

‘/* (f, (S’, S”)) 7 ‘:* ((f, S’ - S”), S’ - S”) - 0 (9) 

(6) 

Thus the theory in qeustion implies that H= HI, const. If we write the terms up to and 
including the first-order terms in the small parameter, the expressions for the variables L,G 
and h will be (the doubie primes accor,panying the variables are omitted) 

L=L _ C (A - P) (Q-L') 
4BL (A - C) cm 21 - x [L vG2 - Hz sin I cos g + 

G vC2 - Lf* cos 1 sin g + H p’c? 5111 1) -,- 0 (~2) 

G=G-%[LVC’- H*cos I sing+ G1/Gz- Hlsin Icosg]+ 
kl (0 -H*) (Ga - L*) 

4LW 
cos 2g + fklH (G* - Ha) 

2LG5 cosg- 

3k,H 
m f(c’z - Hz) (V - La) eos g + 0 (~2) 

h=ko+x $&, 
[ 

sin 1 sin f iflL.2 - Lzcos 2 - 

Jf&8 eosl cos p - 1 k,H (0 - L*) 
4LW sin2g $ 

M(@- 3W sin E_ 
2LG' 3k1 (~~,‘“‘) j/E sin g + 0 (9) 

PACX, 
X=LCs(A-c) 

Hence, we obtain the values of these variables in the form of trigonometric functions 
whose constant coefficients depend on L”.G”,H”. The expressions for the angle variables 1 and 
g contain, in addition tothe analogous terms, a secular part. It should be noted that when 
the theory is constructed including the second-order terms the secular part also appears in 
the expression for h. 

Since the Poisson brackets are invariant, formula (6) enables us to determine, fairly 
simply, in the form Of series of the same type, e.g. the variables P,q,z,y,y',y" of the Euler- 
Poisson problem, provided that we use their expressions in terms of the Deprit variables /4/ 
and the values obtained for the generating functions s' and s". The latter depend only on 
the new variables. This significantly facilitates the computations and makes them suitable 
for computer use. 
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ON THE STUDY OF RANDOM OSCILLATIONS IN N~N*A~T~N~MO~S MECHANICAL SYSTEMS USING 
THE FOKKER-P~N~K-K~~OG~ROV EQUATIONS* 

NGUSN DONG AN 

A method of integrating the Fokker-Plank-Kolmogorov equations (FPKE: used 
in the theory cf random oscillations /1--4/i.s proposed. The Duffing 
equation is first studied aa an example. The method is then used, together 
with the method of averaging, to study random oscillations of non-autonomous 
mechanical systems with one degree of freedom when the eigenfrequency varies 
in a random manner. The Van-der-Pol equation is considered for the case 
of a randomly varying eigenfreq.uency and periodic parametric excitation. 
When the function sought is replaced, the FPKS transform into another 
eqtiation .whose trivial solutions have the corresponding particular solutions 
of the FPKE. The condition of integrability of the FPKE is obtained as 
the direct conseq.dence of the change ln question. 

1. Ccnsider a mechanical system with one degree of freedom, whose motion is described 
by the following stochastic ec;'aatiOn: 

2" -- o*z = f (r, .z 1 - o‘i’ ii: ii.1; 

(1.2) 

wticue I‘ (I; is a raniom, white ncise-type action of unit intensity. Using the substitution 

2 = (2 cos*. I. = -LI(u sinv ;i.?j 

and the 1% form,;la, we reduce Eq. i1.1' to t:he form ,'4,' 

Let us write the F?:XE corresponding to system (I.41 for the stationary probability density 

of the amplitude and phase %‘(a.$, 

~[B,(Q,~)Ii~~i-~ibr~a.~-~il~]~~~~[BI,jo,t)ii*]i 12.5) 

z-g& IBlz(a,v)~~‘1 .LG I& co.*.) ri.1} 

Taking into acco'&nt the expression for f(z,+') (1.21, we obtain 
WI 

S&,$)=_* 
e* car=* d'C03\f 

f(acwrl‘,--msio~)+-------5 20'0 --zwf"-'i c A, ((r)Q' (X.61 
a=t 


